direct product, abelian, monomial, 2-elementary
Aliases: C22×C4×C12, SmallGroup(192,1400)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22×C4×C12 |
C1 — C22×C4×C12 |
C1 — C22×C4×C12 |
Subgroups: 498, all normal (8 characteristic)
C1, C2 [×15], C3, C4 [×24], C22, C22 [×34], C6 [×15], C2×C4 [×84], C23 [×15], C12 [×24], C2×C6, C2×C6 [×34], C42 [×16], C22×C4 [×42], C24, C2×C12 [×84], C22×C6 [×15], C2×C42 [×12], C23×C4 [×3], C4×C12 [×16], C22×C12 [×42], C23×C6, C22×C42, C2×C4×C12 [×12], C23×C12 [×3], C22×C4×C12
Quotients:
C1, C2 [×15], C3, C4 [×24], C22 [×35], C6 [×15], C2×C4 [×84], C23 [×15], C12 [×24], C2×C6 [×35], C42 [×16], C22×C4 [×42], C24, C2×C12 [×84], C22×C6 [×15], C2×C42 [×12], C23×C4 [×3], C4×C12 [×16], C22×C12 [×42], C23×C6, C22×C42, C2×C4×C12 [×12], C23×C12 [×3], C22×C4×C12
Generators and relations
G = < a,b,c,d | a2=b2=c4=d12=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, cd=dc >
(1 148)(2 149)(3 150)(4 151)(5 152)(6 153)(7 154)(8 155)(9 156)(10 145)(11 146)(12 147)(13 92)(14 93)(15 94)(16 95)(17 96)(18 85)(19 86)(20 87)(21 88)(22 89)(23 90)(24 91)(25 181)(26 182)(27 183)(28 184)(29 185)(30 186)(31 187)(32 188)(33 189)(34 190)(35 191)(36 192)(37 105)(38 106)(39 107)(40 108)(41 97)(42 98)(43 99)(44 100)(45 101)(46 102)(47 103)(48 104)(49 69)(50 70)(51 71)(52 72)(53 61)(54 62)(55 63)(56 64)(57 65)(58 66)(59 67)(60 68)(73 165)(74 166)(75 167)(76 168)(77 157)(78 158)(79 159)(80 160)(81 161)(82 162)(83 163)(84 164)(109 129)(110 130)(111 131)(112 132)(113 121)(114 122)(115 123)(116 124)(117 125)(118 126)(119 127)(120 128)(133 171)(134 172)(135 173)(136 174)(137 175)(138 176)(139 177)(140 178)(141 179)(142 180)(143 169)(144 170)
(1 23)(2 24)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(11 21)(12 22)(25 164)(26 165)(27 166)(28 167)(29 168)(30 157)(31 158)(32 159)(33 160)(34 161)(35 162)(36 163)(37 128)(38 129)(39 130)(40 131)(41 132)(42 121)(43 122)(44 123)(45 124)(46 125)(47 126)(48 127)(49 138)(50 139)(51 140)(52 141)(53 142)(54 143)(55 144)(56 133)(57 134)(58 135)(59 136)(60 137)(61 180)(62 169)(63 170)(64 171)(65 172)(66 173)(67 174)(68 175)(69 176)(70 177)(71 178)(72 179)(73 182)(74 183)(75 184)(76 185)(77 186)(78 187)(79 188)(80 189)(81 190)(82 191)(83 192)(84 181)(85 155)(86 156)(87 145)(88 146)(89 147)(90 148)(91 149)(92 150)(93 151)(94 152)(95 153)(96 154)(97 112)(98 113)(99 114)(100 115)(101 116)(102 117)(103 118)(104 119)(105 120)(106 109)(107 110)(108 111)
(1 116 74 71)(2 117 75 72)(3 118 76 61)(4 119 77 62)(5 120 78 63)(6 109 79 64)(7 110 80 65)(8 111 81 66)(9 112 82 67)(10 113 83 68)(11 114 84 69)(12 115 73 70)(13 103 185 180)(14 104 186 169)(15 105 187 170)(16 106 188 171)(17 107 189 172)(18 108 190 173)(19 97 191 174)(20 98 192 175)(21 99 181 176)(22 100 182 177)(23 101 183 178)(24 102 184 179)(25 138 88 43)(26 139 89 44)(27 140 90 45)(28 141 91 46)(29 142 92 47)(30 143 93 48)(31 144 94 37)(32 133 95 38)(33 134 96 39)(34 135 85 40)(35 136 86 41)(36 137 87 42)(49 146 122 164)(50 147 123 165)(51 148 124 166)(52 149 125 167)(53 150 126 168)(54 151 127 157)(55 152 128 158)(56 153 129 159)(57 154 130 160)(58 155 131 161)(59 156 132 162)(60 145 121 163)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)
G:=sub<Sym(192)| (1,148)(2,149)(3,150)(4,151)(5,152)(6,153)(7,154)(8,155)(9,156)(10,145)(11,146)(12,147)(13,92)(14,93)(15,94)(16,95)(17,96)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(25,181)(26,182)(27,183)(28,184)(29,185)(30,186)(31,187)(32,188)(33,189)(34,190)(35,191)(36,192)(37,105)(38,106)(39,107)(40,108)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,69)(50,70)(51,71)(52,72)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)(73,165)(74,166)(75,167)(76,168)(77,157)(78,158)(79,159)(80,160)(81,161)(82,162)(83,163)(84,164)(109,129)(110,130)(111,131)(112,132)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)(133,171)(134,172)(135,173)(136,174)(137,175)(138,176)(139,177)(140,178)(141,179)(142,180)(143,169)(144,170), (1,23)(2,24)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(25,164)(26,165)(27,166)(28,167)(29,168)(30,157)(31,158)(32,159)(33,160)(34,161)(35,162)(36,163)(37,128)(38,129)(39,130)(40,131)(41,132)(42,121)(43,122)(44,123)(45,124)(46,125)(47,126)(48,127)(49,138)(50,139)(51,140)(52,141)(53,142)(54,143)(55,144)(56,133)(57,134)(58,135)(59,136)(60,137)(61,180)(62,169)(63,170)(64,171)(65,172)(66,173)(67,174)(68,175)(69,176)(70,177)(71,178)(72,179)(73,182)(74,183)(75,184)(76,185)(77,186)(78,187)(79,188)(80,189)(81,190)(82,191)(83,192)(84,181)(85,155)(86,156)(87,145)(88,146)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,153)(96,154)(97,112)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120)(106,109)(107,110)(108,111), (1,116,74,71)(2,117,75,72)(3,118,76,61)(4,119,77,62)(5,120,78,63)(6,109,79,64)(7,110,80,65)(8,111,81,66)(9,112,82,67)(10,113,83,68)(11,114,84,69)(12,115,73,70)(13,103,185,180)(14,104,186,169)(15,105,187,170)(16,106,188,171)(17,107,189,172)(18,108,190,173)(19,97,191,174)(20,98,192,175)(21,99,181,176)(22,100,182,177)(23,101,183,178)(24,102,184,179)(25,138,88,43)(26,139,89,44)(27,140,90,45)(28,141,91,46)(29,142,92,47)(30,143,93,48)(31,144,94,37)(32,133,95,38)(33,134,96,39)(34,135,85,40)(35,136,86,41)(36,137,87,42)(49,146,122,164)(50,147,123,165)(51,148,124,166)(52,149,125,167)(53,150,126,168)(54,151,127,157)(55,152,128,158)(56,153,129,159)(57,154,130,160)(58,155,131,161)(59,156,132,162)(60,145,121,163), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192)>;
G:=Group( (1,148)(2,149)(3,150)(4,151)(5,152)(6,153)(7,154)(8,155)(9,156)(10,145)(11,146)(12,147)(13,92)(14,93)(15,94)(16,95)(17,96)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(25,181)(26,182)(27,183)(28,184)(29,185)(30,186)(31,187)(32,188)(33,189)(34,190)(35,191)(36,192)(37,105)(38,106)(39,107)(40,108)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,69)(50,70)(51,71)(52,72)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)(73,165)(74,166)(75,167)(76,168)(77,157)(78,158)(79,159)(80,160)(81,161)(82,162)(83,163)(84,164)(109,129)(110,130)(111,131)(112,132)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)(133,171)(134,172)(135,173)(136,174)(137,175)(138,176)(139,177)(140,178)(141,179)(142,180)(143,169)(144,170), (1,23)(2,24)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(25,164)(26,165)(27,166)(28,167)(29,168)(30,157)(31,158)(32,159)(33,160)(34,161)(35,162)(36,163)(37,128)(38,129)(39,130)(40,131)(41,132)(42,121)(43,122)(44,123)(45,124)(46,125)(47,126)(48,127)(49,138)(50,139)(51,140)(52,141)(53,142)(54,143)(55,144)(56,133)(57,134)(58,135)(59,136)(60,137)(61,180)(62,169)(63,170)(64,171)(65,172)(66,173)(67,174)(68,175)(69,176)(70,177)(71,178)(72,179)(73,182)(74,183)(75,184)(76,185)(77,186)(78,187)(79,188)(80,189)(81,190)(82,191)(83,192)(84,181)(85,155)(86,156)(87,145)(88,146)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,153)(96,154)(97,112)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120)(106,109)(107,110)(108,111), (1,116,74,71)(2,117,75,72)(3,118,76,61)(4,119,77,62)(5,120,78,63)(6,109,79,64)(7,110,80,65)(8,111,81,66)(9,112,82,67)(10,113,83,68)(11,114,84,69)(12,115,73,70)(13,103,185,180)(14,104,186,169)(15,105,187,170)(16,106,188,171)(17,107,189,172)(18,108,190,173)(19,97,191,174)(20,98,192,175)(21,99,181,176)(22,100,182,177)(23,101,183,178)(24,102,184,179)(25,138,88,43)(26,139,89,44)(27,140,90,45)(28,141,91,46)(29,142,92,47)(30,143,93,48)(31,144,94,37)(32,133,95,38)(33,134,96,39)(34,135,85,40)(35,136,86,41)(36,137,87,42)(49,146,122,164)(50,147,123,165)(51,148,124,166)(52,149,125,167)(53,150,126,168)(54,151,127,157)(55,152,128,158)(56,153,129,159)(57,154,130,160)(58,155,131,161)(59,156,132,162)(60,145,121,163), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192) );
G=PermutationGroup([(1,148),(2,149),(3,150),(4,151),(5,152),(6,153),(7,154),(8,155),(9,156),(10,145),(11,146),(12,147),(13,92),(14,93),(15,94),(16,95),(17,96),(18,85),(19,86),(20,87),(21,88),(22,89),(23,90),(24,91),(25,181),(26,182),(27,183),(28,184),(29,185),(30,186),(31,187),(32,188),(33,189),(34,190),(35,191),(36,192),(37,105),(38,106),(39,107),(40,108),(41,97),(42,98),(43,99),(44,100),(45,101),(46,102),(47,103),(48,104),(49,69),(50,70),(51,71),(52,72),(53,61),(54,62),(55,63),(56,64),(57,65),(58,66),(59,67),(60,68),(73,165),(74,166),(75,167),(76,168),(77,157),(78,158),(79,159),(80,160),(81,161),(82,162),(83,163),(84,164),(109,129),(110,130),(111,131),(112,132),(113,121),(114,122),(115,123),(116,124),(117,125),(118,126),(119,127),(120,128),(133,171),(134,172),(135,173),(136,174),(137,175),(138,176),(139,177),(140,178),(141,179),(142,180),(143,169),(144,170)], [(1,23),(2,24),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(11,21),(12,22),(25,164),(26,165),(27,166),(28,167),(29,168),(30,157),(31,158),(32,159),(33,160),(34,161),(35,162),(36,163),(37,128),(38,129),(39,130),(40,131),(41,132),(42,121),(43,122),(44,123),(45,124),(46,125),(47,126),(48,127),(49,138),(50,139),(51,140),(52,141),(53,142),(54,143),(55,144),(56,133),(57,134),(58,135),(59,136),(60,137),(61,180),(62,169),(63,170),(64,171),(65,172),(66,173),(67,174),(68,175),(69,176),(70,177),(71,178),(72,179),(73,182),(74,183),(75,184),(76,185),(77,186),(78,187),(79,188),(80,189),(81,190),(82,191),(83,192),(84,181),(85,155),(86,156),(87,145),(88,146),(89,147),(90,148),(91,149),(92,150),(93,151),(94,152),(95,153),(96,154),(97,112),(98,113),(99,114),(100,115),(101,116),(102,117),(103,118),(104,119),(105,120),(106,109),(107,110),(108,111)], [(1,116,74,71),(2,117,75,72),(3,118,76,61),(4,119,77,62),(5,120,78,63),(6,109,79,64),(7,110,80,65),(8,111,81,66),(9,112,82,67),(10,113,83,68),(11,114,84,69),(12,115,73,70),(13,103,185,180),(14,104,186,169),(15,105,187,170),(16,106,188,171),(17,107,189,172),(18,108,190,173),(19,97,191,174),(20,98,192,175),(21,99,181,176),(22,100,182,177),(23,101,183,178),(24,102,184,179),(25,138,88,43),(26,139,89,44),(27,140,90,45),(28,141,91,46),(29,142,92,47),(30,143,93,48),(31,144,94,37),(32,133,95,38),(33,134,96,39),(34,135,85,40),(35,136,86,41),(36,137,87,42),(49,146,122,164),(50,147,123,165),(51,148,124,166),(52,149,125,167),(53,150,126,168),(54,151,127,157),(55,152,128,158),(56,153,129,159),(57,154,130,160),(58,155,131,161),(59,156,132,162),(60,145,121,163)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)])
Matrix representation ►G ⊆ GL4(𝔽13) generated by
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 8 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 12 |
3 | 0 | 0 | 0 |
0 | 11 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 5 |
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,8,0,0,0,0,1,0,0,0,0,12],[3,0,0,0,0,11,0,0,0,0,12,0,0,0,0,5] >;
192 conjugacy classes
class | 1 | 2A | ··· | 2O | 3A | 3B | 4A | ··· | 4AV | 6A | ··· | 6AD | 12A | ··· | 12CR |
order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
192 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 |
kernel | C22×C4×C12 | C2×C4×C12 | C23×C12 | C22×C42 | C22×C12 | C2×C42 | C23×C4 | C22×C4 |
# reps | 1 | 12 | 3 | 2 | 48 | 24 | 6 | 96 |
In GAP, Magma, Sage, TeX
C_2^2\times C_4\times C_{12}
% in TeX
G:=Group("C2^2xC4xC12");
// GroupNames label
G:=SmallGroup(192,1400);
// by ID
G=gap.SmallGroup(192,1400);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,336,680]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^4=d^12=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations